Public-Private Partnership in Agbiotech: The Case of Genetically Engineered Eggplant in India*

Deepthi Kolady and William Lesser

Applied Economics and Management

Cornell University NY

^{*} Research supported by USAID/ ABSP II Project

Current scenario of ag-biotech

Private sector investing \$ 2.5 B annually in agbiotech

 Developing countries invest at but 5% level of private sector so applications must come from private sector

Why less public investment in Agbiotech in developing countries?

- Costly novel traits
- High regulatory costs
- Poor technology transfer due to lack of proper IPR regulations in Developing countries
- Lack of human capital and R&D infrastructure

Solution?

 Humanitarian donations/public-private partnerships

 But, the question is whether these partnerships are feasible, and if so under what conditions

Two-Tiered Approach:

SMALL FARMERS:

HUMINITARIAN
DONATIONS and
PARTNERSHIPS

Not a real cost for firms if mean 'non commercial market' – issue is segmenting markets COMMERCIAL FARMERS:

Enhance incentive to transfer agbiotechnologies by selective strengthening IPR

Partnerships contd.

- Enhance access to technology for resource-poor farmers
- Generate public-good will
- National capacity build-up

BUT RISKS

- Loose control over technology
- Low-quality products from the partner
- Liability
 Both jeopardize
 commercial interests

Partnerships contd.

REQUIRES

 Developed seed sector and potential for market segmentation based on: crop & region,

> variety, trade status,

community income level, or production system

Trust between partners

Partnerships contd.

For example,

 Monsanto donated virus-resistant technology to Center for Research and Advanced Studies (Mexico), under royalty-free license agreement. The transfer was brokered by ISAAA to develop virus-resistant local varieties (not for processing types) of potatoes in Mexico (1991).

Humanitarian Donations (contd.)

But Mexican project was not economically viable

- virus infection was not the major constraint for the potato growers (less market value)
- Virus damage not readily visible
- cost of transforming and propagation relatively high

However, Monsanto's profits were not threatened because small-scale farmers were difficult to reach in the commercial market

Public-private partnership

Another Example: Bt eggplant in India

- One of the important non-seasonal vegetable crops in India
- Both hybrids and open pollinated varieties grown by farmers
- Nationally 30% of farmers use hybrids

Bt eggplant (contd.)

- Eggplant shoot and fruit borer (ESFB)is the most destructive pest, reduces yield up to 70%
- ESFB damage readily visible
- Farmers use pesticides to control the pest, in many cases over-use is reported

Bt eggplant (contd.)

- Mahyco (Indian seed company, Monsanto owns 26% share) developed *Bt* hybrid eggplant providing resistance to targeted pest (ESFB)
- Donated the technology to public institutions in India to develop Bt OPV varieties of eggplant, while company focuses on Bt hybrid eggplant.
- Donated the toxicology package they have for Bt hybrid eggplant

Bt eggplant (contd.)

- Bt hybrid eggplants received regulatory approval for large-scale trials.
- Bt OPVs are under development by institutions such as TNAU, UAS, Dharwad

Large scale trials of Bt hybrid eggplant (photos by Dr. Frank A. Shotkoski)

TNAU Bt OPV eggplant trials

UAS Dharwad, Bt OPV seedlings in GH

Is the public-private partnership feasible?

- ISSUES: will existence of low-priced Bt OPVs cannibalize the Bt hybrid market?
- What are the conditions for the co-existence of Bt hybrid and Bt OPV technologies?
- Is it replicable for other crops in other countries?

Data Collection

- Farm-level survey in Maharashtra 2004-2005 to collect data on eggplant production practices, farmers' willingness to pay for Bt technology, etc.
- 249 eggplant farmers and 41 non-eggplant vegetable farmers participated

Eggplant production practices

- Hybrid eggplant yield 47% higher than OPV
- Hybrid farmers spend 1.5 times more on pesticides
- Hybrid farmers have better access to credits, markets, irrigation
- Hybrid farmers have higher land value

Fig 1:Map of the study area

Field trials of hybrid Bt eggplant

- Report 52% decrease in pesticide use, and 39% decrease in the number of sprayings of Bt plots
- Average yield from Bt plots 117% higher than non-Bt counter parts.
- Trials pending for Bt OPV but assume same proportional benefits in yield and pesticide use

Results from partial budget analysis for hybrid growers

	Cost/return	Hybrid to Bt hybrid (Rs/ha)	Hybrid to Bt OPV (Rs/ha)
i	Pesticide savings (40%)	13076	25380
ii	Yield benefits (48%)	47086	584
iii	Sub-total returns	60162	25964
iv	Seed prices 1 est. WTP 2 est. WTP	12004 (max) 6625 (average)	1163 (average) 0
V	Net returns (iii-iv1) (iii-iv2)	48158 53537	24801 25964

Results contd.

 Hybrid farmers gain more from adopting Bt hybrid than low-priced Bt OPV

 Hence no incentive to switch to low priced Bt OPVs once available

Results from partial budget analysis for OPV growers

	Cost/return	OPV to <i>Bt</i> OPV (Rs/ha)	OPV to <i>Bt</i> hybrid (Rs/ha)
i	Pesticide savings (40%)	5165	-7405
ii	Yield benefits (48%)	32115	78243
iii	Sub-total returns	37280	70838
iv	Seed prices 1 2	1163 0	12004 (max WTP) 6625 (average WTP)
V	Net returns (iii-iv1) (iii-iv2)	36117 37280	58383 64213

Results contd.

- Resource limited farmers could gain more from adopting Bt hybrid mainly because of the yield benefits.
- However, there are constraints for this adoption: capital, market access, risk, etc.
- Earlier study reported OPV farmers have higher probability to adopt Bt OPV due to socio-economic and production characteristics

Results from sensitivity analysis shows similar trend

Conditions facilitating co-existence of Bt hybrids and Bt OPVs

- Production systems of hybrid and OPV eggplant are different (access to irrigation, access to credit, markets, land value)
- Scope for market segmentation
- Hybrid growers have higher WTP for Bt technology

- Royalty-free Bt OPV will not affect company profits
- Mahyco benefits from the public institution participation by building public relations.
- This kind of segmentation is possible for other crops when different levels of production technologies are used based on access to irrigation, market, credit and land values.

Thank You

